例1:\(SU(2)\)群两个不可约表示的直积\(D^{\left( 2 \right)}\left( 1 \right) \otimes D^{\left( 2 \right)}\left( 1 \right)\)的杨图分解如图所示
图1 \(D^{\left( 2 \right)}\left( 1 \right) \otimes D^{\left( 2 \right)}\left( 1 \right)\)的杨图分解
则
\( D^{\left( 2 \right)}\left( 1 \right) \otimes D^{\left( 2 \right)}\left( 1 \right) =D^{\left( 2 \right)}\left( 2 \right) +D^{\left( 2 \right)}\left( 0 \right) \)
或者可用表示的维度简记为
\( 2 \otimes 2 = 3 \oplus 1 \)
例2:\(SU(2)\)群两个不可约表示的直积\(D^{\left( 2 \right)}\left( 2 \right) \otimes D^{\left( 2 \right)}\left( 1 \right)\)的杨图分解如图所示
图2 \(D^{\left( 2 \right)}\left( 2 \right) \otimes D^{\left( 2 \right)}\left( 1 \right)\)群的杨图分解
则
\( D^{\left( 2 \right)}\left( 2 \right) \otimes D^{\left( 2 \right)}\left( 1 \right) =D^{\left( 2 \right)}\left( 3 \right) +D^{\left( 2 \right)}\left( 1 \right) \)
或者可用表示的维度简记为
\( 3 \otimes 2 = 4 \oplus 2 \)